
International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

101

Design of PDesign of PDesign of PDesign of Proposed Model for Reengineering roposed Model for Reengineering roposed Model for Reengineering roposed Model for Reengineering by by by by

using Object Oriented Methodologyusing Object Oriented Methodologyusing Object Oriented Methodologyusing Object Oriented Methodology

Manjeet1, Sandeep Dalal2

1M.tech Scholar, Department of Computer Science and Applications, MDU, Rohtak, Haryana, India
manjeetnain@yahoo.com

2Assistant Professor, Department of Computer Science and Applications, M.DU, Rohtak, Haryana, India

sandeepdalal.80@gmail.com

Abstract
In this paper we will represents a model that are
basically used to improve the efficiency and reduce
the operational cost during reengineering of software
modules. While reengineering takes place on software
modules, it will focus on object oriented methodology.
As we know that, the public sector organizations
generally follow lengthy procedures and the results are
very slow. The re-engineering using object oriented
methodology helps to identify the problems, which
causes the delays and helps in reutilize various
objects, to reduce the time. The main advantage of
Object Oriented methodology is its modularity and
reusability.
Keywords: Cohesion, Coupling, Object Oriented
Methodology.

Introduction

Object Oriented Design is concerned with
developing an object oriented module of
software system design quality and so on.

“Object oriented design is a method of design,
encompassing the process of object oriented
decomposing is a notation for depicting both
logical and physical as well static and dynamic
models of the system under design.”

Objects are the basic units of object oriented
design. Identity, States and behaviors are the
main characteristics of any object. A Class is a
collection of object which has common
behaviors.

“A Class represents a template for several
objects and describes how these objects are
structured internally. Objects of the same class

have the same definition both for their operation
and for their information structure”

There are several essential themes in object
Oriented design. These themes are mostly
support object oriented design in the context of
measuring and mention in below sub section.

Business processes are simplified rather than
being made more complex. Companies that
reengineer invariably end up dismantling
departments and instead put together process
teams that handle work logically rather than
within the artificial department constraints.
Inevitably, the process team approach will be
more logical and make more sense than any
other approach. Process teams within a
reengineered organization can be of any shape or
size. The work to be done dictates the optimum
size and structure of the process team -- not any
artificial constraints, preferences of the managers
or external factor.

Reengineering will always change the
boundaries between different kinds of work. In
the past, the roles filled by the manager --
checking, reconciling, monitoring and tracking --
will most likely have been at the center of
operations.

After reengineering, the creation of value
becomes the main focus point. As such, the
people who do that most effectively will become
the center of focus. Teams will do whatever is
required to maximize the efficiency of
professionals with the skills applied.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

102

In the reengineered business environment,
advancement from one position within the
company to another is not given as a reward for
previous results. Instead, it’s entirely ability
driven.
The role and purpose of the manager change
from supervisor to coach. Process teams don’t
need bosses - they need coaches. A boss
allocates work. A coach helps the team solve
problems, and facilitates achievement by
providing the requisite resources and other
inputs. In short, managers in reengineered
companies take pride in the accomplishments of
the teams they are responsible for assisting.

Internal Quality of Object Oriented
Design

Cohesion

Cohesion refers to the internal
consistency within the parts of the design.
Cohesion is centered on data that is encapsulated
within an object and on how methods interact
with data to provide well-bounded behavior. A
Class is cohesive when its parts are high
correlated. It should be difficult to split a
cohesive class. Cohesion can be used to identify
the poorly designed classes.

Coupling

Coupling indicates the relationship or
interdependency between modules. For Example,
Object X is coupled to Object Y if and only if X
sends a message to Y that means the number of
collaboration between classes or the number of
messages passed between objects. Coupling is a
measure of interconnecting among modules in
software structure.

Inheritance

Inheritance is mechanism where one
object acquires characteristics from one or more
other objects. Inheritance occurs in all levels of
class hierarchy.

“Inheritance is sharing of attributes and
operations among classes based on the
hierarchical relationship.”

Information Hiding

Booch states that information hiding is the
process of hiding all the secrets of an object that
do not contribute to its essential characteristics.
An Object has a public interface and a private
representation. These two elements are kept
distinct. Information hiding acts a direct role in
such metrics as object coupling and the degree of
information hiding.

Localization

In object oriented design approach
localization is based on objects. In a design, if
there is some changes in the localization
approach, the total plan will be violated because
one function may involve several objects and one
object may provide may functions.

“Localization is the process of gathering and
placing things in close physical proximity to
each other”

Principles of OOD

This section shows some OO design
principles, which are used for support in OO
design. Object Oriented Principles advise the
designers what to support and what to avoid.
The design principles have been categorized into
three groups in the context of design metrics.
These are general principles, cohesion principles
and coupling principles.

General Principles

The open/closed principle (OCP) : Open
Closed principle states a module should be open
for extension but closed for modification. i.e.
Classes should be written so that they can be
extended without requiring the classes to be
modified.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

103

The Liskov Substitution principle: (LSP) Liskov
Substitution Principle mention subclasses should
be substitutable for their base classes i.e. a user
of base class instance should still function if gen
an instance of a derived class instead.

The Dependency Inversion Principle (DIP)
Dependency Inversion Principle state high level
classes should not depend on the low level
classes i.e. abstractions should not depend upon
the details. If the high level abstractions depend
on the low level implementation, the dependency
is inverted from what it should be.

The Interface Segregation Principle (ISP)
Interface Segregation Principle state clients
should not be forced to depend upon interfaces
that they don’t use. Many Client specific
interfaces are better than one general purpose
interface.

Cohesion Principles

Reuse/Release Equivalency Principles
(REP) : The granule of reuse is the granule of the
release. Only components that are released
through a tracking system can be efficiently
reused. A reusable software element cannot
really be reused in practice unless it is managed
by a release system of some kind of release
numbers. All related classes must be released
together.

Common Reuse Principle (CRP): All Classes in
a Package should be reused together. If reuse one
of the classes in the package, reuse them all.
Classes are usually reused in groups based on
collaborations between library classes.

Common closure Principle (CCP) : The classes
in a package should be closed against the same
kinds of changes. A change that affects a
package affects all the classes in that package.
The main goal of this principle is to limit the
dispersion of changes among released packages.
changes must affect the smallest number of
released packages. Classes with a package must
be cohesive. Given a particular kind of change,
either all classes or no class in a component
needs to be modified.

Coupling Principle

Acyclic Dependencies Principle (ADP)
the dependency structure for a released
component must be directed a cyclic graph. And
there can be no cycles.

Stable dependencies Principle (SDP): The
dependencies between components in a design
should be in the direction of stability. A
Component should only depend upon
components that are more stable than it is .

Stable Abstractions Principle (SAP): The
abstraction of package should be proportional to
its stability. Packages that are maximally stable
should be maximally abstract. Instable packages
should be concrete.

Metrics and Quality

Since Object oriented System is
becoming more pervasive, it is necessary that
software engineers have quantities measurements
for accessing the quality of designs at both the
architectural and components level. These
measures allow to designer to access the
software early inn the process, making changes
that will reduce complexity and improve the
continuing capability of the product. The
measurement process is to drive the software
measures and metrics that are appropriate for the
representation of software that is being
measured.

Metrics are categorized into two groups

(1) Project Based Metrics
(2) Design Based Metrics

Project based metrics contain process, product
and resources.

1. Process: Processes are set of software
related activities which are used to
measure the status and progress of the
system design and to predict the future
effects. A process is usually related with
some timescale.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

104

2. Product: Product metrics are used to
control the quality of the software
product. The metrics are applied to
incomplete software products in order
to measure the complexity and to
predict the properties of the final
product. Products are any artifacts,
deliverables or documents that result
from a process activity.

3. Recourse: Resources are entities
required by a process activity. The
resources that need to be measured
include any input for software
production. Thus personnel, materials,
tools and methods are candidates for
measurement.

Design based metrics contains traditional metrics
and object oriented metrics.

Following metrics are used for Object Oriented
Design to determine the complexity.

Method Hiding Factor (MHF)
Attribute Hiding Factor (AHF)
Method Inheritance Factor (MIF)
Attribute Inheritance Factor (AIF)
Polymorphism Factor (POF)
Coupling Factor (COF)

4. Method Hiding Factor (MHF): MHF is
defined as the ratio of sum of the
invisibilities of all methods defined in
all classes to the total number of
methods defined in the system under
consideration. The invisibility of a
method is the percentage of the total
classes from which this method is not
visible. In MHF, inherited methods are
not considered. The number of visible
methods is a measure of the class
functionality. Increasing the overall
functionality will then reduce MHF.

5. Attribute Hiding Factor (AHF) : AHF is
defined as the ration of the sum of the
invisibilities of all attributes defined in
all classes to the total number of
attributes defined in the system under
consideration. Ideally the value of this
metric would be 100%, all attributes
would be hidden and only accessed by
the corresponding class methods.

6. Method Inheritance Factor (MIF): MIF
is defined as ratio of the sum of the
inherited methods in all classes of the
system under consideration to the total
number of available methods for all the
classes.

7. Attribute Inheritance Factor (AIF): AIF
is defined as ratio of the sum of the
inherited attributes in all classes of the
system under consideration to the total
number of available attributes for all the
classes. At first sight we might be
tempted to think that inheritance should
be used extensively. However, the
excessive re-use through inheritance
make the system more difficult to
understand and maintain.

8. Polymorphism Factor (POF):PF is
defined as the ratio of actual number of
possible different polymorphic situation
for the class. In some cases overriding
methods could contribute to reduce
complexity and therefore to make the
system more understandable and easier
to maintain

9. Coupling Factor (COF):Coupling is a
measure of interdependence of two
objects ,for example ,objects A and B
are coupled if a method of object A
calls the method or access a variable in
objects B. Classes are coupled when
methods declared in one class use
methods or attributes of other class.
This factor has a very positive co-
relation with all quality measures

Measuring Quality

Measurement enables to improve the software
process, assist in the planning, tracking the
control of a design. A good software Engineer
uses measurements to asses the quality of
analysis and design model, the source code, the
test cases etc.

“Quality refers to the inherent or distinctive
characteristics or property of object, process or
the thing. Such characteristics or properties may
set things apart from other things or may denote
some degree of achievement or excellence.”

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

105

Impact of an object oriented
approach:

Shifting of development effort into
analysis: In object oriented approach much of the
time is devoted t the analysis phase of the life
cycle. It sometimes discouraging to spend more
time during analysis and design, but this extra
effort leads to faster and similar implementation.
Because the resulting design is cleaner and more
adaptable, it is easier to make changes in it.

Emphasis on objects before functions: This
approach focuses attention n data structure
instead n the functions to be performed. The
concept of an object allows the development
process to be more stable. Even all another
concepts such as functions, relationships and
events are organized around objects so that
information is not lost or transformed during
design and implementation phases.
Vast Development Process: Object Model during
analysis is used for design and implementation
and worked or the model is refined at more
detailed levels rather than converting from one
representation into another.
Iterative rather than sequential: The actual
development process of life cycle is iterative.
Each interaction adds or clarifies features rather
than modifies work, which has been already
done, so there are fewer chances of errors.

Procedure oriented Methodology:

This Methodology is in C language which is
developed at AT&T’s Bell Laboratories of USA
in 1972.It was designed and written by a man
named Dennis Ritchie. In the late sensitive C
began to replace the more familiar languages like
ALGOL, FORTRAN etc.

Steps involved in OOD

System Design: It creates the product
architecture, defines the series of layers that
accomplish the specific system function and
identifies the classes that are encapsulated by the
subsystems that are present at each layer.

Object Design: It focuses on internal details of
the individual classes, defining attributes,
operations and message details.

Structure of Object Oriented
Methodology

The structure of OOM is divided into Stages.
Each Stage consists of a number of tasks and
each task is further decomposed into sub-tasks.

The following diagram depicts clearly the structure of OOM:

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

106

Proposed Model

The model described in this paper is an attempt
to delineate the central features of BPR and OO
and provide a mapping of the links between

them. There are two essential aspects to the
model: the vertical or classification, and the
horizontal or mapping.

‘Proposed Model’

A review of the literature on BPR and OO
identifies the essential features of each and
classifies them as principles, consequences or
benefits. This classification forms the vertical
aspect of the model and describes a progression
from the principles of the approach, through the
consequences of the application of those
principles, to benefits that should be realized.
The idea behind this progression is that the
application of a set of principles will, in turn,
imply certain consequences, that ultimately
should provide a set of benefits. For example, the
effect of the BPR principle, “workers make
decisions and the process itself has built-in
controls” will be that there is “greater

empowerment of individuals”. Similarly,
consequences should imply certain benefits. For
example, the benefit that results from the OO
consequence “improved means of altering
components” should be “improved ability of the
system to be adapted and extended”.

Design of Software Module

Based on proposed model, reengineering of
software module, such problem statement into
class diagram and object diagram by using OO
Methodology and generalize them.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

107

Class Diagrams

Reception Hospital Ward
Location :

Receptionist/Executives
Infrastructure : Number of

Beds

(1) Issue of OPD Cards Treatment of Patient

(2) Information to Customers

Operation Theater Doctors

(1) Type of Equipments Qualification
(2) Availability of Operation

Theater Experience

(3) Blood Bank Specialization

Operating Patients Consultancy

 Surgery

Insurance Desk Patient

Company Name Disease

Number of Executives Age
Claim Approval from
Insurance Company Fee

 Treatment

Nurses

Qualification

Experience

Care of Patient

Assisting Doctors

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

108

Object Diagrams

Reception Operation Theater

Receptionist: Employee Blade, Cutter : Equipment

Ground Floor : Location Blood: Blood Bank

Skills : Customer Handling
Metal : Steel Blade &

Cutter

Floor : Ground Floor Blood Group : B+, A+

Hospital Ward Doctors

Room : Infrastructure MBBS : Qualification

Iron Bed : Infrastructure

Room : AC Room Specialization : Cardiology

Metal : Iron Bed

Insurance Desk Patient
Medical Insurance :

Insurance Eyes Infection : Disease

Manager : Employee
Coverage : Medical

Expenses Parts of Body : Eyes
Designation : Insurance

Manager

Nurses

B Sc : Qualification

Designation : Senior Nurse

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

109

States:

A state is an abstraction of the values and links
Sets of values are grouped together into a state
according to the behavior of the objects. State is
represented by rounded box. State has a definite
duration. It is associated with a continuous
activity.
A state diagram relates events and states. A
change of a state caused by an event is called
transition. A state diagram describes the behavior
of a class of objects. Since all objects of the same
class have the same behavior they all share the
same state diagram, as they all share the same
class features.

Generalization

It is a relationship between a class (the
super class) and one or more variations of the
class (sub class). It organizes classes by their
similarities and differences. The class that is
being refined is called SUPER CLASS and each
of its refined versions is called SUBCLASS.

Discussion
 Proposed model help to set
Relationships between Hard and Soft Barriers
due to this we can determine individual
resistance factor and information technology
barrier of root cause.

 Typical Root Causes to Information Technology Barriers

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

 IJESPR
www.ijesonline.com

110

Typical Root Causes of Individual Resistance

Conclusion

The hard and soft barrier helps us to understand

and design of software modules, while

reengineering takes place not only today but also

in future.

Reference

[1] Davenport, Thomas & Short, J. (1990), "The
New Industrial Engineering: Information
Technology and Business Process Redesign",
in: Sloan Management Review, Summer
1990, pp 11–27

[2] Davenport, Thomas (1993), Process
Innovation: Reengineering work through
information technology, Harvard Business
School Press, Boston

[3] Davenport, Thomas (1995), Reengineering -
The Fad That Forgot People, Fast Company,
November 1995.

[4] Grady Booch. "Object-oriented Analysis and
Design with Applications, 3rd

[5] edition":http://www.informit.com/store/prod
uct.aspx?isbn=020189551X Addison-Wesley
2007.

[6] Rebecca Wirfs-Brock, Brian Wilkerson,
Lauren Wiener. Designing Object Oriented
Software. Prentice Hall, 1990. [A down-to-
earth introduction to the object-oriented
programming and design.]

[7] A Theory of Object-Oriented Design: The
building-blocks of OOD and notations for
representing them (with focus on design
patterns.)

[8] Martin Fowler. Analysis Patterns: Reusable
Object Models. Addison-Wesley, 1997. [An
introduction to object-oriented analysis with
conceptual models]

[9] Bertrand Meyer. Object-oriented software
construction. Prentice Hall, 1997

[10] Brett McLaughlin, Gary Pollice, David
West. Head First Object-Oriented Analysis
and Design. O'Reilly, 2006.

